Fractional integrals of modular forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterated Integrals of Modular Forms and Noncommutative Modular Symbols

The main goal of this paper is to study properties of the iterated integrals of modular forms in the upper halfplane, eventually multiplied by zs−1, along geodesics connecting two cusps. This setting generalizes simultaneously the theory of modular symbols and that of multiple zeta values. §0. Introduction and summary This paper was inspired by two sources: theory of multiple zeta values on the...

متن کامل

Cycle Integrals of the J-function and Mock Modular Forms

In this paper we construct certain mock modular forms of weight 1/2 whose Fourier coefficients are cycle integrals of the modular j-function and whose shadows are weakly holomorphic forms of weight 3/2. As an application we construct through a Shimura-type lift a holomorphic function that transforms with a rational period function having poles at certain real quadratic integers. This function y...

متن کامل

On Cycle Integrals of Weakly Holomorphic Modular Forms

In this paper, we investigate cycle integrals of weakly holomorphic modular forms. We show that these integrals coincide with the cycle integrals of classical cusp forms. We use these results to define a Shintani lift from integral weight weakly holomorphic modular forms to half-integral weight holomorphic modular forms.

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

Harmonic Maass Forms, Mock Modular Forms, and Quantum Modular Forms

This short course is an introduction to the theory of harmonic Maass forms, mock modular forms, and quantum modular forms. These objects have many applications: black holes, Donaldson invariants, partitions and q-series, modular forms, probability theory, singular moduli, Borcherds products, central values and derivatives of modular L-functions, generalized Gross-Zagier formulae, to name a few....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2005

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa116-1-5